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Figure S1. Ca2+ response assay in AS cells, tissue fluidity and the parameters of cellular morphology 
and dynamics during the elliptical stage, related to Figures 1 and 2. 
(A) Individual traces of normalized GCaMP6s fluorescence at junctions of neighbors in wounding experiments. 
Laser induced wounding at T=0. 



(B) Image from a living embryo expressing the membrane Ca2+ sensor (myr-GCaMP6s). The dashed yellow 
line marks the cell outline. Scale bar 10 µm. 
(C) Fluorescence trace of Ca2+ sensor without wounding indicating the degree of bleaching of GCaMP6s.  
(D) Time-lapse imaging of neighbor cell dependent Ca2+ response. Images 10 s before and 30 s after wound 
induction in the marked target cell in embryos of wild type and xit mutant.  
(E) Time course of Ca2+ sensor fluorescence (mean (solid line) and 95% bootstrap confidence interval 
(band)). Wounding at t=0. N=10 embryos per genotype.  
(F) Normalized fluorescence of Ca2+ sensor 30 s after wounding. Statistical significance by student t-test. P 
values = 3.6e-07. 
(G) Distribution of apical cross-section area.  
(H) Distributions of cell oscillation periods determined via wavelet transform.  
(I) Autocorrelation functions of the area trajectories. Average with confidence band. Numbers indicate the 
major periods of the oscillations. 
(J) Geometrical indicators of tissue fluidity for the three mutants. The black line indicates the theoretical 
transition between solid-like and fluid-like tissue. Each dot represents one frame from the time-lapse 
recordings of the AS. Statistical significance of distribution difference according to a 2d Kolmogorov-Smirnov 
test: WT-Tmc p=8e-117, WT-xit p=5e-186, Tmc-xit p=3e-99. 
(K) T1 transition rate for every embryo (dots). Statistical significance of distribution difference according to a 
Kolmogorov-Smirnov test: WT-Tmc p=0.012, WT-xit p=0.002, Tmc-xit p=0.58. 
(L) Direction of T1 vertex resolution. Statistical significance according to chi-squared test against uniform H0: 
WT p=0.73, Tmc p=0.19, xit p=0.87. 
 
  



 
 



Figure S2. Cell shape changes during germband retraction and elliptical stage, related to Figure 2 
(A) Images from time-lapse recordings of wild-type, Tmc, and xit mutants. Dorsal view, axial projections. 
Junction labeled by E-cadherin-GFP. A few cells are outlined in red, indicating the cell shape changes. 
(B) Cumulative distributions of cell anisotropy separately for all values and peripheral cells during indicated 
stages.  
(C) Time course for the average orientation of AS cells for each embryo. Mean and standard deviation 
averaged over embryos are indicated by grey line and band. Angle is normalized between the axial axis and 
lateral axis. Dots indicate average values during germband retraction.  
(D) Time course of the average shape anisotropy for each embryo. The grey line and band indicate the mean 
and standard deviation averaged over embryos. Dots indicate average values during germband retraction. 
(E) Distribution of cell shapes with an anisotropy larger than 0.3 indicated by boxplots in wild-type and xit 
embryos. Statistical significance: p-value = 8.3e-08; two-sided Mann–Whitney test. WT, n=8 embryos, 436 
cells; xit, n=7 embryos, 238 cells. 
  



 
Figure S3. Response of neighbors to triggered contraction of a target cell, related to Figure 3.  
(A) Experimental scheme for in vivo triggered contraction of the target cell (red) by Ca2+ uncaging. Area 
trajectories for the next neighbors (blue) were recorded.  
(B) The trajectories of area change in target cells (red) and next neighbors (blue) after triggered contraction in 
the target cell by Ca2+ uncaging at 0 min. Solid lines indicate average bands with a 95% bootstrap confidence 
interval.  
(C) Area difference of target cell and neighbors between the time of uncaging and 6 min after that. 
(D) Ensemble averaged cell areas across in xit mutant. Bands represent 95% bootstrap confidence interval. 
Black triangles denote the detected change points for the ensemble mean of the neighbor cell areas (blue). 
Gray lines indicate the average area before and after the changepoint. Time relative to opto-chemical trigger 
event at t=0.  



(E) Measured in vivo area contractions in neighbors in wild type, Tmc and xit mutants. P-values calculated via 
the Mann-Whitney-Wilcoxon test. ***, 1.0e-04 < p <= 1.0e-03. WT-Tmc p= 1.3e-04 (same data in Figure 3D), 
WT-xit p= 4.9e-04. NWT=48, NTmc=28, Nxit=34. 
(F) Distribution of changepoint estimates (kernel density estimate from 10000 bootstrapped changepoint 
inferences). 
  



 



Figure S4. Synchronization and subsampling analysis, related to Figure 5 
(A) Exemplary cross-covariance of a synchronized cell pair (red) and an anti-synchronized cell pair (blue). 
Time lag for both coupling types marked with an arrow.  
(B) The difference in oscillation frequency in cell pairs is shown by the cumulative distribution.  
(C) Time lag of the extremum in the cross-correlation functions between neighboring cells plotted as a 
histogram.  
(D) Numbers of cell pairs for correlation analysis from the complete data set. Neutral cases have a local false 
discovery rate>0.1. 
(E) Cumulative distribution of correlation coefficients of all cell pairs computed over the complete elliptical 
stage. Statistical significance of distribution difference according to a Kolmogorov-Smirnov test: WT-xit p=2e-
27. 
(F) Proportion of sync and anti-sync cell pairs among cell pairs with statistically significant coupling. Wild type, 
8 embryos 7370 pairs with 795 sync, 801 anti-sync significant coupling; xit, 7 embryos with 4714 pairs with 
324 sync, 541 anti-sync significant coupling. Statistical significance of frequency difference according to chi-
squared test: WT-xit p=4e-16. 
(G) Significant regions of the correlation maps determined via bootstrapping over the embryos. 
(H) Length scales of correlation maps determined by variogram analysis and fit to Gaussian random field. The 
comparison of length scales from the original correlation map with its randomized version shows that there is 
a significant spatial order for wild type and xit maps but not for the Tmc map. 
(I) Maps of correlation coefficients kernel-averaged from wild type (same data in Figure 5F) and xit mutant. 
Below each map, randomized correlation maps are displayed. Hereby, measured correlation coefficients were 
reassigned to randomly chosen junctions. FDR subsample maps: Positions of cell junctions for 
(anti-)synchronized pairs subsampled via controlling the local false discovery rate.  
(J) Spatial density profile of FDR subsampled junctions from wild type (same data in Figure 5G) and xit 
mutant.. Confidence bands were computed by bootstrapping over embryos. 
(K) Fits of theoretical Gaussian variogram (bestfit in blue) to the measured variogram (orange).  
  



 
Figure S5. Quantification of similarity between simulations and experimental data, related to Figures 4 
and 5. 
(A) Mean and standard deviation of correlation coefficients for simulations as a function of coupling strength 
and fraction of coupled cells. For a fraction of one, every cell pair in the tissue is equipped with mechano-
chemical coupling. Simulations were repeated 20 times for each parameter set and the mean and standard 



deviation of the distribution of correlation coefficients evaluated. For weak or absent coupling, cells are on 
average moderately anti-correlated. Parameters were optimized for matching the experimental distribution of 
correlation coefficients. Samples of correlation maps predicted by the model for best-matching parameters are 
shown. This shows that, in principle, the fraction of coupled cells (e.g. heterogeneous distribution of Tmc) can 
alter the correlation distribution. However, inference suggests that a homogeneous distribution of the 
mechano-chemical coupling mechanism has the highest likelihood. 
(B) Same plots as in (A), here with extended parameter range for coupling strength J. Blacked regions are 
collapsed simulations in more than 30% of simulations. In addition, the collapse probability is shown.  
(C) The distance between the model and experiment was quantified by the Jensen divergence between the 
distribution of correlation coefficients.  
(D) Same as (C) but showing relevant parameter region and additional contour lines for clarity. Blue and 
green dots mark maximum a posteriori estimates of model parameters obtained by nested sampling. 
  



 
Figure S6. Simulation and experimental detection of tissue-scale tension distribution in response to 
epidermal pulling force and tissue-scale tension in lateral epidermis, related to Figure 6 
(A) External tension was applied perpendicular to the AS in order to mimic pulling by the lateral epidermis as 
described in Figure 6A. Below: similar scheme like in Figure 6A but for Tmc like parameters, showing tension 
in individual cells.  
(B) Tension changes in cells in AS simulation. First, the simulation ran long enough to equilibrate without 
external force, then external force was applied and simulation ran again until equilibration. Colors denote the 
change in tension before and after applying the external force.  
(C) Kymographs of representative experiments with junctions in lateral (up) or axial (bottom) orientations. 
Arrow head in red points to position of laser application. Displacement d is the change in the distance 
between the adjacent 3x vertices indicated by dashed line in yellow. 
(D) Representative displacement curves following junction cuts (wild type data same in Figure 6D).  



(E) Initial recoil velocities (wild type data same in Figure 6E). One micro dissection experiment was performed 
per single embryo (n=10 embryos for each genotype and condition. Statistical significance by Student’s t-test. 
ns, p>0.05, **p<0.01, ***p<0.0001). 
(F) Time scales calculated by fitting of a viscoelastic element to the displacement traces. Statistical 
significance by Student’s t-test, ns, p>0.05, **p<0.01. 
(G) Live imaging in the lateral epidermis, from an embryo expressing Tmc-eGFP using a GFP tag introduced 
at the C-terminus of Tmc at the endogenous gene locus. The images were captured from apical or junctional 
planes; the dashed while line marks the cell outline. 
(H) Images from the time-lapse recording after the laser ablation. E-CadGFP outlines cells. The green arrow 
lines indicate the velocity vectors performed by particle image velocimetry (PIV) analysis. The length of 
vectors represents the magnitude of the recoil velocity.  
(I) Quantification of the recoil velocity from vertically (lateral orientation). Boxplot shows the initial recoil 
velocities after tissue ablation. Boxes, second and third quartiles; whiskers, 95% confidence interval; 
horizontal line, mean. Dots are the data outside of confidence interval. Three independent experiments from 3 
embryos in each genotype, N=252 vectors Toward the LE and AS respectively. Statistical significance by 
Student’s t-test, WT-Tmc (Toward the LE) p= 1.4e-03; WT-Tmc (Toward the AS) p=6.9e-08. 
 



Data S1. Modeling of intercellular coordination in the amnioserosa, related to Figures 4 and S5 

In order to investigate intercellular synchronization computationally, we used a cell-based model, where single 
cell units are operating on a triangular lattice. They are interacting via mechanical interactions and are 
additionally coupled via mechanosensitive Ca2+ activation that in turn activates myosin. 

Conceptual model 

The dynamics of a single cell unit is realized as a system of three coupled differential equations for the cell 
area A, the myosin concentration m and amount of Ca2+-ions c. Colored terms denote extensions of Dierkes’ 
model S1. 
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whereas T(m) is the myosin induced contractile force, Te the equilibrium tension and K(A) the intrinsic spring 
force. For a full discussion of these terms see S1. The noise ξ(t) is a Gaussian random force. 
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Θ(x) is the activation function for the mechano-sensitive ion channels. In this study β is chosen such that the 
activation effectively is heaviside-like, but in principle smoother activation is possible. The argument Ȧ(%) 
denotes the change in area in a neighbor cell n. In the simulation we use the difference in tension at the 
interface between the two cells, however for readability reasons we simply write #̇(%) here. The parameter J 
controls the strength of the novel calcium coupling mechanism. 

Two-cell model 

A simple first test of the model is its realization as a linear chain, but only with two elements. In this simplified 
system it is easy to get a feeling for the novel calcium coupling extension. 
The basic equations for the linear chain, as depicted in Fig. 1, read 
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These equations are an application of Kelvin-Voigt viscoelastic dynamics to the border dynamics S2. Here, xn 

denotes the position of the nth cell border in the linear chain. The 1D ’area’ of a cell thus is An = xn+1 − xn. 
Myosin and calcium dynamics do not change compared to (2). We reduce this chain of n cells to 2 cells. 
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We see that we can write this system in terms of a mass-matrix on the left hand side and the sum of forces on 
the right hand side since x appears only linearly on both sides 
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Figure 1: Linear chain model for two cells. 

 
This system is used to calculate the phase diagram including synchronization in the main text. 

Model on triangular lattice 

The amnioserosa epithelium is modeled as single cell units which follow the dynamics described in the 
previous sections and are arranged on a triangular lattice. This model is comprised of one dimensional limit-
cycle oscillators on a grid, with connections determined by an interaction matrix. The system of equations for 
a single cell unit i read 
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The index i denotes cells on the lattice sites, n runs over the N neighbors (N=6 for hexagonal configuration). 
Myosin and calcium dynamics remain mostly unchanged except for summing all contributions from 
neighboring cells to obtain the total calcium influx. 
External mechanical forces R(!,-!2%34) are comprised of the total internal force acting inside neighboring cells. 
We simplify by assuming that the force is distributed isotropically among all 6 neighboring cells and thus the 

external force component acting on cell i from cell j is R/5
(/%-!2%34)/6 in case of a triangular lattice. 

The substrate friction λ causes dissipation of energy as cells move across a substrate. Biologically, this is 
motivated by the amnioserosa lying above the yolk of the developing embryo. 

Boundary and external tension 

Since the amnioserosa roughly features an elliptical shape we also employ such a geometry. Fully 
unconstrained cell units are arranged on a triangular lattice with periodic boundary conditions. We chose an 
ellipse with ratio of the half axes a/b = 1/2 and determine a and b such that we have around 150 cells in the 
tissue. Cells outside this ellipse are called border cells and follow different dynamics. They are simple 
relaxators consisting only of contractile elements with spring constants kext. There is mechanical coupling to 
the cells from the tissue but no myosin or calcium compartments. By tuning kext we can set constraints on the 
total tissue area. 
External tension is applied as constant force applied to all border cells. We assume that the epidermis exerts 
a pulling force perpendicular to the AP axis of the tissue. Therefore, the effective external force acting on a 
border cell is highest for the middle cells, where the tangent of the AS border is aligned with the AP axis. The 
local external force declines towards the canthi, which is realized by a cosine weight depending on the x 
position along the AP axis, where x = 0 is exactly in the middle of the tissue. 

Simulations 

The model is implemented and optimized in Julia S3. A single simulation of the 2D model with 150 cells (450 
coupled DEs + noise) completes in 2-3 minutes on a single core of a 8 year old laptop with an Intel i5 2.50 
GHz processor. For parameter searches, nested sampling and repeated simulations the code can be 
parallelized. Integration of the system of stochastic differential equations is done via the Julia 
package ”DifferentialEquations.jl” S4. Because the model becomes unstable for certain parameter 
combinations, we employ an adaptive solver that takes smaller timesteps to maintain convergence if needed 
S5. We tested and compared different solvers, for instance an implicit Euler scheme, and we picked a solver 
that empirically showed the best performance and stability. 

Parameter Inference 

We compare the simulations of the model with experimental data by utilizing the distribution of correlation 
coefficients between neighboring cells as metric for the overall degree of synchronization. Since we compare 



distributions, a cross entropy measure is chosen to evaluate the model likelihood. In particular we use the 
Jensen-Shannon divergence, a symmetric version of the Kullback-Leibler distance, between the in vivo and in 
silico distributions. 
The Kullback-Leibler distance is defined as 
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The Kullback-Leibler divergence is minimized by the maximum likelihood estimate which can be swiftly 
calculated 
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This is intuitively clear because minimizing the distance between the ’real’ distribution with correct parameters 
θ0 and the model distribution with parameters θ ultimately leads to the closest representation of the data that is 
possible for a given model. 
Then we obtain the Jensen divergence in the following way 
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The Jensen divergence is a similar distance metric with the advantage to yield symmetric distances while the 
Kullback-Leibler divergence is dependent on the order of model and simulation distribution. 
Parameter optimization is performed utilizing nested sampling S6. The parameter space is first uniformly 
sampled and then subsequently constrained via multi-ellipsoidal fits to the existing live points. In Julia, we use 
the package ”NestedSamplers.jl” S7, which is similar to MultiNest S8. Simulations were performed using the 
following parameters: k( = 1,  k) = 15,  t( = 2.1,  µ = 0.5,  k ext  = 0.001,  λ = 0.9,  D = 0.001,  m# = 1,  A# = 1,  τ =
1,  τA = 1. 
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