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Supplementary Text 

IHC-SGN synaptic transmission model 

IHC-SGN synaptic transmission and SGN spike generation was modeled according to Meddis et 

al., 1990 (58) using Igor Pro software. In brief, the transmitter release rate/fraction [k(t)], is a 

sigmoidal function directly dependent on the stimulus level [st(t)]: k(t)=g(st(t) + A) / (st(t) + A + 

B). The parameter g represents the maximal release rate, A controls the baseline release, as well 

as the threshold of the release and B controls the saturation and the steepness of the curve. Under 

the assumption of Ca2+ nanodomain control of release (Fig. 4), k(t) reflects the stimulus 

dependence of Ca2+ channel activation. The parameters A and B of the release fraction equation 

are modified in order to shift the sigmoidal function (Table S1, fig. S12). The release fraction 

determines the synaptic cleft transmitter content (c). Spike generation is scaled by the cleft 

transmitter content, firing probability scaling factor (h) and further modulated by absolute (0.8 ms) 

and relative (2 ms) refractory periods (59). The relative refractory period is a random number 

drawn from a monoexponential distribution with an average value of 2 ms. Rate-level functions 

are obtained by calculating the adapted firing rates from the simulated PSTH (50 ms stimulation 

duration).  
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Fig. S1. 

Shift to lower voltages and altered voltage sensitivity of CaV1.3 activation in IHCs of 

CaV1.3AG/WT and CaV1.3AG/AG mice. (A) Representative Ca2+ current traces from CaV1.3WT/WT 

(bottom left) and CaV1.3AG/AG (bottom right) IHCs evoked by step depolarizations (top). (B) Whole 

cell Ca2+ current-voltage relationships (IV curves) show comparable maximal Ca2+ current 

amplitude in CaV1.3WT/WT, CaV1.3AG/WT, and CaV1.3AG/AG IHCs. Error bars show ± SEM (C) Ca2+ 

channel activation-voltage relationships calculated from IV-curves show a hyperpolarized shift in 

CaV1.3AG/WT and CaV1.3AG/AG IHCs. Error bars show ± SEM. (Ci) The voltage of half maximal 

activation (Vhalf) is hyperpolarized in CaV1.3AG/WT and CaV1.3AG/AG IHCs. (Cii) The voltage 

sensitivity (k) is decreased in CaV1.3AG/WT and increased in CaV1.3AG/AG IHCs compared to the 



 4 

controls. (D) Mean exocytic Cm and Ca2+ current integrals (Qca) evoked by 100 ms pulses of 

different depolarizations. (E) Mean exocytic Cm in response to different depolarization durations. 

Data in (B), (C) and (D) is presented as mean ± SEM. Box-Whisker plots with individual data 

points overlaid show median, 25th and 75th percentiles (box), 10th and 90th percentiles (whiskers). 

Statistical significances were determined using one-way ANOVA followed by Tukey’s Honestly 

Significant Difference (HSD) for (Ci) and (Cii). Significances are reported as **p < 0.01, ***p < 

0.001. 
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Fig. S2. 

Slow deactivation of Ca2+ channels in IHCs of CaV1.3AG/WT and CaV1.3AG/AG mice. (A) 

Activation and deactivation constants of Ca2+ currents were obtained by fitting exponential 

functions (dotted lines) to the first 3 ms of activation and 1 ms of deactivation. (B) CaV1.3 

activation kinetics across voltages are not changed in IHCs of CaV1.3AG/WT and CaV1.3AG/AG mice. 

(C) The deactivation kinetics are slower in IHCs of CaV1.3AG/WT and CaV1.3AG/AG mice. (D) 

Normalized and averaged CaV1.3 currents measured by applying 60 repetitive stimulations with 

10 ms duration and 5 ms interstimulus interval in IHCs of CaV1.3WT/WT, CaV1.3AG/WT, and 

CaV1.3AG/AG mice. Error bars show ± SEM. (E) The fraction of Ca2+ current remaining after 60 

repetitive stimulations is comparable in CaV1.3WT/WT, CaV1.3AG/WT, and CaV1.3AG/AG IHCs. (F) 

Representative normalized Ca2+ currents measured by applying 500 ms depolarization at the 

maximal activation voltage in CaV1.3WT/WT, CaV1.3AG/WT, and CaV1.3AG/AG IHCs. (G) The fraction 

of Ca2+ current remaining after 500 ms depolarization is comparable in CaV1.3WT/WT, CaV1.3AG/WT, 

and CaV1.3AG/AG IHCs. Data in (B), (C) and (D) is presented as mean ± SEM. Box-Whisker plots 

with individual data points overlaid show median, 25th and 75th percentiles (box), 10th and 90th 

percentiles (whiskers). Statistical significances were determined using one-way ANOVA/Kruskal-

Wallis test followed by Tukey’s HSD/Dunn’s test for each voltage for (B) and (C) and Kruskal-

Wallis test for (E) and (G). Significances are reported as *p < 0.05, ***p < 0.001. 
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Fig. S3. 

Increased open probability and decreased number of CaV1.3 channels in CaV1.3AG/AG IHCs. 

(A) Exemplary mean Ca2+ current (middle) evoked by the voltage clamp protocol (top) and 

variance of the mean current (bottom). Currents were recorded in the presence of 5 M BayK and 

10 mM extracellular Ca2+. (B) Data from exemplary cells showing variance of the mean Ca2+ 

current plotted against the mean Ca2+ current and fitted with a quadratic function. (C) The number 

of activatable Ca2+ channels is reduced in CaV1.3AG/AG IHCs. (D) Ca2+ channels in CaV1.3AG/AG 

IHCs show higher open probability (Po) compared to CaV1.3WT/WT IHCs. (E) Single channel 

current (i) of Ca2+ channels is not changed in IHCs of CaV1.3AG/AG mice. Box-Whisker plots with 

individual data points overlaid show median, 25th and 75th percentiles (box), 10th and 90th 
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percentiles (whiskers). Statistical significances were determined using two-tailed Wilcoxon rank-

sum test for (C), two-tailed t-test for (D) and (E). Significances are reported as ***p < 0.001. 
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Fig. S4. 

Smaller CaV1.3 channel clusters and ribbons at active zones of apical CaV1.3AG/AG IHCs. (A) 

Maximal intensity projections of confocal stacks acquired from IHC synaptic regions and 

immunolabeled against Ribeye A, Bassoon and CaV1.3. Scale bar = 2 m. (B) 

Immunofluorescence intensity of the synaptic ribbons at the apical turn of the cochlea is reduced 

in CaV1.3AG/AG IHCs. All values were normalized to the median intensity of the CaV1.3WT/WT 

ribbons. (C) Immunofluorescence intensity of synaptic CaV1.3 positive puncta obtained from the 

confocal stacks is reduced in CaV1.3AG/AG IHCs. All values were normalized to the median 

intensity of the CaV1.3WT/WT channel clusters. (D) Representative images of IHC AZs acquired by 

STED imaging of AZs immunolabeled for Ribeye/Ctbp2 and CaV1.3. Scale bar = 200 nm. (E) 

CaV1.3 line-like clusters fitted with 2D gaussian function show reduced full with at half maxima 
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(FWHM) of long and short axes in CaV1.3AG/AG IHCs. Box-Whisker plots with individual data 

points overlaid show median, 25th and 75th percentiles (box), 10th and 90th percentiles (whiskers). 

Statistical significances were determined using two-tailed Wilcoxon rank-sum test for data in (B), 

(C) and (E). Significances are reported as ***p < 0.001. 

 

  



 10 

 

Fig. S5. 

Modiolar-pillar gradients of ribbon size and CaV1.3 cluster size are preserved in apical IHCs 

of CaV1.3AG/WT and CaV1.3AG/AG mice. (A-C) Maximal intensity projections of approximately 2 

IHCs from CaV1.3WT/WT (A), CaV1.3AG/WT (B), CaV1.3AG/AG (C) mice immunolabeled against 

Vglut3, Ctbp2, CaV1.3. (Ai-Ci) Comparison of the immunofluorescence intensities of pillar and 

modiolar ribbons in IHCs of CaV1.3WT/WT (Ai), CaV1.3AG/WT (Bi), CaV1.3AG/AG (Ci) mice. (Aii-Cii) 

Comparison of immunofluorescence intensities of pillar and modiolar CaV1.3 clusters in IHCs of 

CaV1.3WT/WT (Aii), CaV1.3AG/WT (Bii), CaV1.3AG/AG (Cii) mice. Data were acquired from N = 2 

(CaV1.3WT/WT), 1 (CaV1.3AG/WT), 2 (CaV1.3AG/AG) mice. Box-Whisker plots with individual data 

points overlaid show median, 25th and 75th percentiles (box), 10th and 90th percentiles (whiskers). 

Statistical significances were determined using two-tailed Wilcoxon rank-sum test for data in (Ai-

Ci) and (Aii-Cii).  Significances are reported as ***p < 0.001. 
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Fig. S6. 

Individual IHCs show a pillar-modiolar gradient of voltage of half maximal activation. (A) 

Vhalf of Ca2+ channels at single AZs plotted against their position along the pillar-modiolar axis of 

the IHC. Thick lines show linear regression lines. Dotted lines indicate the center of the pillar-

modiolar axis. (B) Same as (A) but from 2 representative cells. Vhalf center obtained from the linear 

fit of Vhalf vs pillar-modiolar position, shows predicted Vhalf of each cell at the center of pillar-

modiolar axis. (C) Vhalf center of each IHC was subtracted from Vhalf of each AZ obtained from the 

cell, afterwards the data from all the recorded cells were pooled and fitted with linear function. 

Pearson’s correlation coefficient is shown as (r). 
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Fig. S7. 

Comparable dynamic range of sound encoding by SGNs of CaV1.3WT/WT, CaV1.3AG/WT and 

CaV1.3AG/AG mice. (A) Average ABR waveforms in response to 80 dB clicks recorded in mice 

under isoflurane anesthesia. (B) ABR thresholds in response to click stimuli are comparable in 

CaV1.3WT/WT, CaV1.3AG/WT and CaV1.3AG/AG mice. (C) P1-N1 amplitude across different sound 

levels are comparable in CaV1.3WT/WT, CaV1.3AG/WT and CaV1.3AG/AG mice. (D) SRs of SGNs 

recorded from CaV1.3WT/WT mice under isoflurane anesthesia are lower than those recorded under 

urethane/xylazine aesthesia. (E) Average PSTH in response to 500 ms tone burst stimulation at 

the CF, 30 dB above the threshold level and 0.5 Hz stimulation rate. Shaded areas show ± SEM. 

(F, Fi and Fii) Onset (Fi) and adapted (Fii) firing rates calculated from PSTH in (E) are not 

changed in CaV1.3AG/WT and CaV1.3AG/AG mice. (G) Rate level functions (RLFs) of individual 

SGNs recorded in response to 50 ms stimulation at the CF, 30 dB above the threshold level and 

stimulation rate of 5 Hz. (H) Average and normalized RLFs of SGNs, whereby the RLF of each 

SGN was further adjusted relative to its threshold (determined from the RLF). Shaded areas show 

± SEM. (I and J) dynamic ranges (I) and the thresholds (J) calculated from RLFs are not changed 

in CaV1.3AG/WT and CaV1.3AG/AG mice. Single unit recordings were obtained from N = 6 

(CaV1.3WT/WT), 3 (CaV1.3AG/WT), 6 (CaV1.3AG/AG) mice. Box-Whisker plots with individual data 

points overlaid show median, 25th and 75th percentiles (box), and the range (whiskers). Statistical 
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significances were determined using Kruskal-Wallis test for (B), (Fi), (Fii), (I) and (J), Kruskal-

Wallis test followed by Tukey-Kramer multiple comparison test for each sound level for (C), 

Kolmogorov-Smirnov and two-tailed Wilcoxon rank-sum test for (D). Significances are reported 

as ***p < 0.001. 
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Fig. S8. 

Larger fraction of ribbons with hollow cores in CaV1.3AG/AG IHCs. (A) Representative electron 

micrographs of the ribbon synapses from CaV1.3WT/WT and CaV1.3AG/AG IHCs. (B) Schematic 

illustration of the quantitative analysis of random EM sections. (C) Increased ribbon area in 

CaV1.3AG/AG IHCs. (D) higher percentage of ribbons with translucent core in CaV1.3AG/AG IHCs. 

(E) The length of the postsynaptic density (PSD) is not changed at the afferent synapses of 

CaV1.3AG/AG IHCs. (F) Total vesicle number associated with the ribbons is increased in 

CaV1.3AG/AG IHCs. (G) The fraction of the vesicles associated with the distal half of the ribbon 

(away from the plasma membrane) is decreased, while those associated with the proximal ribbon 

half (close to the plasma membrane) is increased in CaV1.3AG/AG IHCs. (H) The number of the 

membrane proximal synaptic vesicles is unchanged, while the number of the ribbon associated 

vesicles is increased in CaV1.3AG/AG IHCs. (I) The distance of the membrane proximal and ribbon 

associated vesicles from the ribbon is not changed in CaV1.3AG/AG IHCs. Each genotype represents 

data from N = 2 mice. Box-Whisker plots with individual data points overlaid show median, 25th 

and 75th percentiles (box), 10th and 90th percentiles (whiskers). Statistical significances were 

determined using two-tailed Wilcoxon rank-sum test for (C), (E), (F), (H) and (I) and two-tailed t-

test for (G). Significances are reported as *p < 0.05, **p < 0.01, ***p < 0.001. 
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Fig. S9. 

CaV1.3AG/AG IHCs exhibit loss of ribbons at the middle and basal turns of the cochlea after 

the hearing onset. (A-D) Number of the ribbons at different tonotopic locations was counted in 

the confocal stacks of IHCs of p13 (A), 2-month-old (B), 9-month-old (C) and 2-month-old quietly 

reared (D) mice. (Ai-Di) Maximal intensity projections of the representative IHCs immunolabeled 

against Ribeye/Ctbp2 and calretinin or Vglut3. Scale bar = 5 m. Box-Whisker plots with 

individual data points overlaid show median, 25th and 50th quartiles (box), 10th and 90th percentiles 

(whiskers). Statistical significances were determined using two-tailed Wilcoxon rank-sum test for 
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each tonotopic location followed by Bonferroni-Holm multiple comparison correction for (A), (B) 

and (C) and Kruskal-Wallis followed by Dunn’s multiple comparison test for middle and basal 

cochlear regions for (D). Significances are reported as ***p < 0.001, ****p < 0.0001. 
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Fig. S10. 

Quantification of SGN mitochondria content in SBEM reconstructions of CaV1.3WT/WT and 

CaV1.3AG/AG mid-cochlear region. (A) Mitochondrial reconstructions of example auditory nerve 

fiber (ANF, peripheral neurite of SGN) postsynaptic to the CaV1.3WT/WT (left) and CaV1.3AG/AG 

(right) IHCs. (B and C) In contrast to CaV1.3WT/WT (black), total mitochondrial volumes are larger 

in both terminals (b) and full-length peripheral neurites (c) of ribbon-associated SGNs in 

CaV1.3AG/AG (red) cochlea. (D) Higher ANF mitochondrial density of CaV1.3AG/AG (red) than that 

of CaV1.3WT/WT cochlea (black). (E and F) For SGNs on CaV1.3AG/AG IHCs, the ribbon-associated 

terminal (green) features a greater number and larger total volume of mitochondria than those 

without a ribbon (grey). (G) Mean sizes of mitochondria are comparable between ribbon-

associated and ribbonless terminals. (H) Ribbon-associated SGNs (green) have a larger terminal 
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size than ribbonless SGNs (grey). Each genotype represents data from N = 2 mice. Statistical 

significances were determined using two-tailed t-test for (B), (C) and (D) and paired t-test for (E), 

(F), (G) and (H). Significances are reported as *p < 0.05, **p < 0.01, and ****p < 0.0001. 
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Fig. S11. 

Quantification of IHC synaptic ribbon numbers in SBEM reconstructions of mid-cochlear 

regions in individual CaV1.3WT/WT, CaV1.3AG/WT and CaV1.3AG/AG animals. The number of the 

ribbons is maintained in CaV1.3AG/WT IHCs and is reduced in CaV1.3AG/AG IHCs. Box-Whisker 

plots with individual data points overlaid show median, 25th and 75th percentiles (box), and the 

range (whiskers). Statistical significances were determined using two-tailed t-test. Significances 

are reported as **p < 0.01, ****p < 0.0001. 
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Fig. S12. 

The effects of modifying model parameters A and B on the SGN rate-level function. (A and B) 

Normalized release fractions (A) and their corresponding rate-level functions (B). The exact parameters 

can be found in Table S1. 
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Table S1. 

Model parameters. Parameters A and B of the release fraction equation were modified, but the 

rest of the parameters were kept constant. 

 

  

Parameters 1 2 3 

A  1 1 0.1 

B  1200 50 1.1 

g  1660 1660 1660 

dt (s) 0.0001 0.0001 0.0001 

y (replenishment rate) 16.6 16.6 16.6 

l (rate of loss from the cleft)  500 500 500 

r (rate of return from the cleft) 12500 12500 12500 

x (rate of release from reprocessing to free transmitter) 3000 3000 3000 

h (firing probability scaling factor) 10000 10000 10000 
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