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(a) Identification of domains within the tandem SANT/SLIDE domain of CHD6 by alignment to resolved
human (h) and yeast (Sacharomyces cerevisiae, sc) CHD1 domains in the PDB database.

(b) Representative brightfield images of patient-derived fibroblasts (top left) undergoing
reprogramming via OCT4, SOX2, NANOG, and MYC overexpression (top middle), before single iPSC
colonies are picked from the plate (dashed line; top right). Representative immunofluorescence
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images of patient-derived iPSC clones stained for the TRA1-60 (bottom left) and TRA1-81 markers
(bottom right) in nuclei are counterstained with DAPI. Bar: 10 um.

(c) Representative brightfield images of wild-type (top) and patient-derived iPSCs (bottom) giving rise
to embryonic bodies (EBs).

(d) Representative immunofluorescence images of wild-type and two patient-derived iPSC clones
(middle and bottom rows) efficiently differentiated into ectoderm and stained for B-tubulin
expression. Bar: 10 um.

(e) As in panel d, but differentiated into mesoderm and stained for SMA expression. Bar: 10 um.

(f) As in panel d, but differentiated into endoderm and stained for SOX17 expression. Bar: 10 um.

(g) Agarose gel electrophoresis profiles of iPSCs cut by Cas9 at the CHD6 locus (/eft) and of a wild-type
and an edited iPSC population diagnosed for carrying the HSS mutation via BspHI restriction digest.
(h) Representative brightfield images of iPSCs differentiated into NCCs (top) and RT-qPCR data of NCC
marker genes (mean 1S.D., n=3; bottom).

(i) Representative immunofluorescence images of wild-type and mutant iPSC-derived NCCs stained for
the PAX6 (left) and CHD7 markers (right). Nuclei are counterstained with DAPI. Bar: 10 um.

(j) Bar plot showing the top significantly enriched GO terms/pathways associated with downregulated
genes (at least 0.6 log,-fold change, P,4<0.05) shared by patient-derived CMs and NCCs.

(k) As in panel j, but for upregulated genes shared by patient-derived CMs and NCCs.

() In vitro migration (“scratch”) assays of wild-type and mutant NCCs and their quantification (below)
over a time course of 8 h; two-tailed Student’s t-test P-values for each time point are also shown.
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Fig. S2. Analysis of CHD6 ChIP-seq data from multiple cell types.

(a) Representative genome browser views of CHD6 ChIP-seq in wild-type (wt), monoallelic mutant
(mut) or patient-derived (pat) NCCs (green), CMs (magenta), and iPSCs (blue) aligned to iPSC-derived
TFEB ChlIP-seq data.

(b) Line plots showing ChIP-seq signal in the 6 kbp around CHD6-bound sites from wild-type (light pink)
and homozygous-/heterozygous-mutant CMs (magenta); input signals serve as control (grey). ChIP in
the top panel was performed using 1% PFA for 10 min at room temperature, compared to 2% PFA for
45 min at 4°C used in the bottom panel (yielding 271 peaks vs 642 wt-peaks, respectively).

(e) Heatmaps showing ChIP-seq signal distribution in the 6 kbp around CHD6-bound sites from wild-
type (wt) or heterozygous mutant CMs (het) for all 1918 peaks detected.

(d) Bar plots showing the top significantly-enriched GO terms/pathways for CHD6-bound genes in
heterozygous mutant CMs.

(e) Line plot showing CHD1 (orange), CHD2 (black), and CHD7 (blue) ChIP-seq signal in the 6 kbp
around CHD6-bound sites from mutant iPSCs; signal distribution from the peak list of each dataset
serves as positive control (dashed lines).

(f) Bar plots showing relative enrichment of signal from ENCODE transcription factors ChlP-seq at
CHD6-bound sites from mutant NCCs.

(g) Line plots showing mutCHD6 (blue) and TFEB ChlIP-seq signal (orange) in the 6 kbp around co-
bound TSSs from mutant iPSCs.

(h) Gene set enrichment analysis of ranked gene expression data from 3’-end RNA-seq data of serum-
starved wild-type compared to serum-starved heterozygous (middle row) or homozygous CHD6-
mutant iPSCs (bottom row). The same analysis on wild-type iPSCs in the presence and absence of
starvation provides a control (top row).
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Fig. S3. Autophagy, DNA damage, and senescence responses in CHD6-mutant cells.

(@) Western blot analysis of proteins involved in autophagy and the DNA damage response in isogenic
wild-type (wt) or two monoallelic-mutant iPSC clones (mutA,B) following etoposide treatment (/eft) or
starvation (right).

(b) Representative immunofluorescence images (left) of wild-type (wt), monoallelic- (mut), or
heterozygous-mutant (het) iPSCs stained for lysosomes (light blue) using an in vivo Lysotracker
DeepRed reporter, and bean plots quantifying signal (right). The number of cells analyzed (N) is given
below each plot. *: significantly different to wild-type; P<0.01, Wilcoxon-Mann-Whitney test.

(c) As in panel b, but for nuclear LC3 signal in NCCs.

(d) As in panel b, but for total phospho-S6 signal in NCCs.

(e) As in panel b, but for H3K27me3 signal in iPSCs treated for 30 min with etoposide and allowed to
recover for 24 h.

(f) As in panel e, but for HP1a signal in iPSCs.

(g) Staining for B-galactosidase activity in wild-type, homozygous, and heterozygous mutant iPSCs
treated or not with etoposide and/or spautin and allowed to recover for 48 h; B-gal positive cells are
indicated (arrows).
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Fig. S4. Effects of the 11600M CHD6 mutation on gene expression and chromatin binding.
(a) Coomassie-stained SDS-PAGE profiles of purified wild-type (wt) and 11600M (mut) full-length CHD6
and its SANT-SLIDE domain. The migration profiles of molecular weight markers (in kDa) are indicated.

(b) EMSAs performed with increasing titers of wild-type (wt) or mutant full-length CHD6 domain (mut)

on a DNA template.

(c) As in panel b, but for the wild-type (wt) or mutant SANT-SLIDE 2 CHD6 domain (mut).
(d) As in panel ¢, but with increasing titers of the wild-type (wt) or mutant SANT/SLIDE 2 CHD6 domain
(mut) on a nucleosomal template.
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(e) Restriction enzyme accessibility assays (REA; top) and quantification (bottom) on a
mononucleosome with time in the presence of 40 nm of wild-type (wt) or mutant full-length CHD6
(mut).

(f) Gel image of sliding assays using an end-positioned nucleosome and increasing titers of wild-type
(wt) or mutant full-length CHD6 (mut).

(g) Line plot showing mean distribution of H3K4me3 ChlP-seq (blue), FAIRE-seq (green), and ATAC-seq
signal (orange) in the 4 kbp around mutCHDG6 binding sites in iPSCs.

(h) Bar plots showing mean relative enrichment of MNase-gPCR signal (£SD) at exemplary CHD6-
bound genes using mononucleosomal DNA from iPSCs. *: significantly different to wild-type levels;
P<0.01, two-tailed unpaired Student’s t-test (N=4).

(i) Genome browser views showing hESC ENCODE DHS- and ChlP-seq data around five CHD6-bound
gene promoters. The positions of primers used in MNase-gPCR (Fig. S4H) are indicated by arrows.

(j) Volcano plots of proteomics data following co-immunoprecipitation of wild-type (/eft) or mutant
CHD6-interacting proteins (middle) obtained in iPSCs after etoposide treatment for 2 h. Proteins
enriched significantly compared to non-specific IgG controls are shown in orange, and chromatin
remodeling subunits lost in the mutCHDG6 interactome are highlighted (black) over shared interactors
(light grey); enrichment of CHD6 in the data (magenta) serves as positive control. Levels of wild-type
and mutant CHD6 from iPSCs treated with etoposide are also shown (right).

(k) Venn diagrams (left) showing the overlap between CHD6-bound genes and genes differentially-
regulated upon BRG1 knockdown in hESCs. Bar plots (right) showing significantly-enriched GO terms
associated with CHD6-bound up-/down-regulated genes.
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SUPPLEMENTAL TABLES
Table S1. Sequences of oligonucleotides used as gRNAs, repair templates, and primers in PCR/qPCR

reactions (provided as an .x/sx file).

Table S2. Summary of microarray-based karyotyping data of all iPSC lines used in this work (provided as
an .xlsx file).

Table S3. Genes significantly up- or downregulated in total RNA-seq data from patient-derived or
homozygous mutant CMs and NCCs compared to their wild-type counter parts (provided as an .xIsx file).

Table S4. Genes significantly up- or downregulated in 3’ end RNA-seq data generated from wild-type,
patient-derived or homozygous mutant iPSCs after serum starvation or etoposide treatment (provided

as an .x/sx file).

Table S5. Lists of significant CHD6 ChIP-seq peaks and their coordinates (hgl19) from all the different
genetic backgrounds and cell types (provided as an .x/sx file).

Table S6. List of peptide hits and statistical analysis of proteomics data from wild-type and mutant iPSCs
untreated, treated with etoposide or subjected to starvation (provided as an .x/sx file).

Table S7. Full list of antisera used and their working dilutions (provided as an .x/sx file).



