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Figure 1: Indirect FRAP experiment and FEM simulations for the determination of the lipid
diffusion coefficient of the s-PSM. (A) Exemplary fluorescence micrographs of an indirect
FRAP experiment. Fluorescence intensity was bleached in a ROI (r, = 2.2-2.3um) on
top of an entire f-PSM and the fluorescence recovery was observed over time. Scale bar:
5um. Normalized, averaged fluorescence recovery curves of indirect FRAP experiments of
the s-PSM on (C) Au/6MH and SiO;<, <> coated substrates. Simulated recovery curves were
modeled for Dgpsygim = 13 ums™ and different Dg pgygim = 0.5-3 ums™'. Lipid diffusion
coefficients of the s-PSM on Au/6MH functionalized substrates of D psyay = 2 ums™ ! and
on SiOj<g<o coated substrates Dgpgmgio = 1.5 um s~! agreed best with the experimental
data.
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Figure 2: (A) Atomic force micrographs of PSMs prepared by spreading electroformed GUVs
on porous substrates (dpore = 1.2 um) functionalized with Au/6MH or SiO;<,<5. Scale bars:
5um. (B) Atomic force micrographs and corresponding height profiles along the black solid
line.

A B
10 10
ns ns
\ 150 pN 8 1 8 1
c 61 c 6 1
Z 1 100 nm
& 4 < 2 QPSs = T
n
B 21 B 21
\ <— indentation © ©
e ot A oo A 0 1 —Mean 0 1 —NMean
N —Median 5 —Median
d/nm 0.1 1.0 10.0 02 04 06 08 10 12
indentation speed / pm s™ loading force / nN

Figure 3: (A) Exemplary force-displacement curve measured in the center of an f-PSM.
Influence of (B) indentation speed and (C) loading force on the lateral membrane tension.
Force-displacement curves were obtained from PSMs derived from microfluidic GUVs on
SiO1<,<2 functionalized substrates (B) at different indentation speeds (n.; = 62) and (C)
loading forces (ngo = 85, ng4 = 62, ngs = 30, n1o = 32). Statistical t-test: p > 0.05 (ns).
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Figure 4: Parametrization of a pore-spanning membrane that is indented with a conical
indenter. The symmetry is centrosymmetric. The pore edges (dark blue) act as a hinge to
fix the biased membrane (green), which forms a catenoid to minimize the area or free energy.
a denotes the contact radius of the membrane with the indenter, while z is the total depth
of indentation. € is the contact angle with the indenter, while 90 — 6 is half the angle of the
cone.



